Essential and Unexpected Role of YY1 to Promote Mesodermal Cardiac Differentiation
نویسندگان
چکیده
Cardiovascular Research Center, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA; Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC; Department of Cardiovascular Surgery, German Heart Center, Clinic at the Technische Universitaet Muenchen, Munich, Germany; Division of Mammalian Development, National Institute of Genetics, Mishima, Japan; and Harvard Stem Cell Institute, Cambridge, MA 02138.
منابع مشابه
Essential and unexpected role of Yin Yang 1 to promote mesodermal cardiac differentiation.
RATIONALE Cardiogenesis is regulated by a complex interplay between transcription factors. However, little is known about how these interactions regulate the transition from mesodermal precursors to cardiac progenitor cells (CPCs). OBJECTIVE To identify novel regulators of mesodermal cardiac lineage commitment. METHODS AND RESULTS We performed a bioinformatic-based transcription factor bind...
متن کاملP-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs
Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...
متن کاملYY1 plays an essential role at all stages of B-cell differentiation.
Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro-B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre co...
متن کاملPlant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1.
Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeo domain finger protein 8(PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commi...
متن کاملThe Four and a Half LIM-Domain 2 Controls Early Cardiac Cell Commitment and Expansion Via Regulating β-Catenin-Dependent Transcription
The multiphasic regulation of the Wnt/β-catenin canonical pathway is essential for cardiogenesis in vivo and in vitro. To achieve tight regulation of the Wnt/β-catenin signaling, tissue- and cell-specific coactivators and repressors need to be recruited. The identification of such factors may help to elucidate mechanisms leading to enhanced cardiac differentiation efficiency in vitro as well as...
متن کامل